
t.
z_

. ! ,.

Ji ,

[i "

!il: ,-

:!i
i r, •
ill

!l .

;N . '

r

I

{! ? ,

2? '

!,

._ • . .

J_

I

Z

] -
I

I
t
4

i .

INVESTIGATION OF PROBLEMS iN THERMAL CONVECTION
r

J. R. Herring

Goddard Institute for Space Studies

National Aeronautics and Space Administration

New York 27, N.Y.

OTS PRICE

$

L



I

!

!

ABSTRACT

i
!

J
i
1

!
g - . .

: , .

1
I

, . .

1 "

i
1
| .
t ,

;l
i

-I
i

J
1 :
"t

_ " .

The thermal convection equations for a thin layer of

fluid are solved numerically as an initial value problem.

The calculations include only those nonlinear terms which

have the form of an interaction of a fluctuation in the velocity

and temperature with the mean temperature field. In the present

calculations, the velocity and temperature fluctuations have one

horizontal wave number, and satisfy free boundary conditions

on two conducting horizontal surfaces.

The computed steady state velocity and _empe_ature

amplitudes show many of the observed qualitative featu: es.

J

In particular, the experimentally observed -,undary iaverin5

of the mean temperature field is correctly _ -_ro,-/.:ced .<nd, a_

large Rayleigh number, the total heat transporz __ founa to b_

proportional to the .cube root of the Rayleigh numbe: :.Lovided

the fluctuating temperature and velocity ampltudas have tha_
k

horizontal wave number which maximizes the _o'a'al nea. uranspo::

However, the heat transport found here for .i_ee bc:_:daries is

ab)ut three times the experimental value for -_,--d boundaries.
J

/

The mean temperature gradient can beco;_,e n, ;_" _,e nea_ the

boundaries for large Rayleigh numbers an_ _&_ horizontal

scale motions.

J
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I

The linear stability of the system is also investigated,

and it is concluded that the stable solutions for all Rayleigh

nu._ers investigated (R __ 10 6 ) have horizontal wave numbers

which very nearly maximize the total heat transport.

The stability study also indicates regions in which two or

more horizontal wave numbers are required to support convection.
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, -__._i, I. Introduction

_ ,-_,'_' This paper describes the resul_:s of a numerical investigation

............ of the t:hermal convection equations for a thin layer of fluid
• _.-_!_! _
• _ _.

_;:-_- confined between two plates on which free boundary conditions

:_' ' are employed. Our theoretical procedure is to include only those

;;_22"!"?:'i;J;"

.... ;2i [_.....

_i _ ,_ _i_

nonlinear terms which describe the interaction of the mean

temperature with velocity and temperature fluctuations. That

is, those terms responsible for eddy viscosity and eddy

conductivity effects on the turbulence itself are omitted. The

above eddy terms (hereafter referred to as fluctuating self-

interactions) are discarded in a physically consistent manner,

so that no unrealistic behavior results from their omission.

The motivation for this research is to discover quantitatively

to what extent the turbulent convection problem can be comprehended

_i!_!!_!i,!i!:i i without the fluctuating self-interactions. The system of equations

...._-;_'_ obtained by deleting these terms corresponds to closing the

...._,,,_: hierarchy of moment equations at the first nontrivial level by

!_!_i_ discarding third order cumulants. The resulting system of

,,_._- equations is complete and involves no empirical parameters.

...._, _ Moreover, the gross energetics of the flow are preserved.

_ _._ The method of numerical solution consists in integrating the

-_ii_7 /i_Fourie r amplitudes of the velocity and temperature fields forward

i III,__ _._/_in time until the steady state is achieved. This procedure has

the advantage of assuring the stability of the final state provided

....! a sufficient range of initial data is sampled. The present

• . r . .....

i1

• l
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calculations, carried out on the IBM 7090, contain one horizontal wave _ _

number and enough vertical wave numbers to ensure the elimination of

c_uncation errors. In the numerical analysis, we have set the Prandtl

ii_ij_:i; " number equal to unity. However, inspection of =he equa=ions which omit
i!

i ' _"! /; " the fluctuating self-interactions shows that the heat transport: is not

! ii .
=

j .

1
1
!

t :

_ ;i:_, tua:ion fields have that horizontal wave number which maximizes the hea_ _

i :transport. However, the heat transport found here for free-boundary

I . ._ conditions is three times the experimental value for rigid-boundary '

|

] !iL

] :_ill_

.... i i
] . :..

a function of Prandtl number, if the system is steady. I

The calculated velocity and temperature fields show many of the

qualitative features of the experimentally determined fields. In par-

ticular, at large Rayleigh _number, R, the total heat transport is found

to be proportional to R I/3, provided the velocity and temperature fluc-

The mean temperature gradient at low R closely resembles the _ _

experimental temperature profiles. At large Rayleigh numbers i:ii!!!

i:?!!_ii i 06 )
_!:!i_, (R _ , the gross features of the temperature profiles are

i_,iT:,:i correctly predicted by our system. ='he computed mean temperature

i_:i _;!!!i gradients are large in a thin layer adjacent to boundary and are

/ ,

:tii

that the boundary conditions are quite important in producing the

experimental heat transport. The system has two additional failings:

_it _urns out that the fluctuating amplitudes are s_eady in time and the :,

• !i
horizontal plan form of the motions is indeterminate.

:_i _

i :ii:

conditions. Preliminary numerical studies of the rigid-boundary problem o

indicate that for large Rayleigh numbers (R_ 10 6 ) the heat transport is

about a factor of 2.3 smaller than that for free-boundaries and therefore

approximately 50 percent higher than the experiment. Thus, it appears
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quite'small in the body of the fluid. The gradients near the

boundary can become negative for motions of large horizontal

scale, but remain positive for motions of a sufficiently small

horizontal scale.

The stability of the steady state solutions against

infinitesimal perturbation at other horizontal wave numbers is

also investigated and the regions oJ" instability are delineated.

These results closely parallel pert_rbation results at low

Rayleigh number and support the idea that the most stable solut£on

is near the one transporting the most heat flux (Malkus and Veronis,

1958). A finite amplitude stability study, and the associated

development of a several,horizontal-wave-number system to stea_]y

state will be the topic of a future investigation.

The idea that the important features of the conv_ction

problem are contained in the system which omits the fluctuating

self-interactions is implicit in the theory of convection advanced

by Malkus (1954). In the original formulation of his theory,

Malkus sought a maximum for the heat transport subject to the

constraint that the temperature gradient be positive, and that

there be a smallest scale of motion participating in the advective

heat transport• The smallest scale is supposed to be determined

,by the requirement that it be marginally stable in the presence

of the mean temperature gradient occurlng in the fluid. The

smallest scale so determined furnished a cut off in the .cosine

representation of the mean temperatu:_e gradient. The assumption

•that the heat transport was maximum under the above constraints

then led to an explicit form for the temperature gradient.



-4-

A more recent formulation of the Malkus theory by Spiegel (1962)

replaces the cosine representation of the temperaturegradient

by an expansion in terms of the set of eigenfunctions, which

4-%-are marginally stable on _e mean temperatuz-e gradient This

version of the Malkus theory is exactly equivalent to the

system considered here, provided the horizontal scale of the

motions is such that the mean temperature gradient is everywhere

positive. In this sense, our numerical results contain, as a _'

special case, the exact solutions to the Malkus theory for one

horizontal wave number and free boundaries.

In this connection, a comparison of our computed temperature

gradients with the predictions of the Malkus theory is relevant.

In making this comparison, we must keep in mind that the system

considered here is explicitly confined to only one horizontal

wave number, whereas Malkus makes r o explicit references to the

nature of the horizontal-wave-numbe_r spectrum. We do not confirm

-2
the z law for the gradient outside the boundary layer as

predicted by Malkus, nor do we find a sharp cut off in the cosine

._pectrum of the temperature gradients.

At low Rayleigh numbers (R< 2000) our numerical results

are in agreement with the calculations of Malkus and Veroni:_ (1958)

and Kuo (1961) who have obtained perturbation solut;ons to the

convection equations. A procedure similar to ours has been used

by Saltzman (1961) in studying the complete convection equations

for R _ 6000. Our approach differs from his in that we

are able to allow very many vertical modes to be excited,
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whe_:'eas his results are limited to one vertical mode. Our

results indicate that it is essential to allow many more vertical

modes than horizontal modes, if large truncation errors are to

be avoided. Thus, at R x 4000, l0 vertical modes must be

included to obtain realistic temperature profiles.

II. Theory

a) The Equation of Motion and Boundary Conditions

We consider a thin layer of fluid confined between two

infinitely conducting plates located at z = 0 and z = d. The

lower plate is maintained at zero degrees, and the top plate

at a temperature -T o , on an arbitrary temperature scale. The

direction of gravity is specified by the unit vector -k. The

equations appropriate for our system are the Boussinesq

2
approximations to the Navier-Stokes equations. We shall write

these equations in a form in which the velocity and temperature

(_ and T) as well as the coordinate and time (r and t) are

nondimensional. The only parameters entering the equations

are then the Rayleigh number, R, and the Prandtl number, _.

The equations are

V.v : 0 (i)

<51%Y- = ;ivx(Vx( .v ) + RVx(VxkW) (2)

<_t- 72)T =- 7-(_T) (3)
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Equa_:io_ (2) is actually the double curl of the momentum equation,

'and l_ence the pressure variable is absent. The nondimensional

variables are related to the dimensional ones (denoted by primes)

in the following way:
i
I

d
V -- m _!

K

T = T'/d

=

T.,

£]

Here _ is the thermometric diffusivisy of the fluid.

The boundary conditions on the velocity field are derived from

the requirement that the fluid exert no shear on the confining plates.

This, together with the continuity equation, implies that a.ll even

derivatives of the vertical velocity, w, vanish on the boundary. In

the nondimensional notation the boundary conditions are,

_m

w(0,t)
5Z

2m

= 5_z_n w(l,t) = 0, m = 0, i, 2, ... (4)

_--. and

T(0_t) = 0; T(1,t) = -1 (5)

b) Discard of the Fluctuatinq Self-Interactions

It is convenient to resolve the temperature field into a

horizontal mean plus a fluctuating part;
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T = -z + _Cz,t) +.8(r,t) (6)

Here, _(z,t) is a horizontally averaged distortion o_ the conduction

state and 8(_,t) is the fluctuation of the temperature from its

distorted value. In view of the boundary condition (5), and the

interpretation of 8 as a fluctuation from the horizontal mean, we

may write.

_(o,t) = _(l,t) = o

S(x,y,O,t) = _(x,y,l,t) = e = 0

(7)

(8)

The bar on equation (8) indicates an average over the horizontal.

We now introduce equation (b) into equations (i), (2) and (3) and

subtract from each of the resulting equations their respective

horizontal mean. We find

1 _ " _e + ! Ivxvx{_.v_)#z

Q_t - _) _ = tI - _) w -_z
(v® - k_)

There are two more equations, for the x and y components of the

velocity field, but these are not necessary for our problem. The

last terms in the equations above for w and ® have the form of a

deviation .of a bilinear fluctuating quantity from its horizontal me._n

(fluctua=ing self-interaction). By discarding these terms we obtain1

the system to be investigated;
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where:

i V _) V=w = Rv_
(9)

(%_t - v_)® = 8 w

,J

s

- %z=Y ¢ = - %z

8(z) = 1 - =
%z Bz

(i0)

, (11)

The significance of omitting fluctuating self_-interaction can

be expressed formally by examining the hierarchy of moment e,_.,_,t[ons

obtained from equations (1)-(3). By multiplying equations (2) and

(3) by v(t') and T(t') and ensemble-averaging the appropriate sums

of the resulting equations, we obtain the time evolution equatio_]s

for the correlation coefficients <vivj'>, and <viT'>, and <T T'>.

These equations couple the above second order moments to the trallsfer

terms, which are cubic in U and T.

Since the system contains a non-vanishing first-order moment,

_, the transfer terms contain both correlated third-order moments

(cumulants) and products of first order moments with second-order

moments. The discarding of the fluctuating self-interactionthen

corresponds to closing the system of moment equations by discarding

3
the third order cumulants- In the absence of mean fields this

procedure would be empty.

We must now verify that our procedure of deleting third-orb]or

cumulants does not lead to physically unrealistic results. For our

procedure to be acceptable, the system of equations (9), (I0) :_,_d (ll)
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i

must obey the conservation laws associated with the complete set

of convection equations , and they must be free from unphysical conse-

quences of the sort recently discussed by Ogura (1962), for a similar
[ . ., '

problem in isotropic turbulence. Ogura has demonstrated that the

assumption of zero forth-order cumulants and nonzero third-order

cumulants is incompatible with a positive energy spectrum for all

4
wave numbers.

With regard to the last point, it should be noted that the

positive definite character of the kinetic energy wave number spectrum

and the spectrum for the square of the temperature field follows _

directly from the fact that it is possible to write the equations

which delete third order cumulants in terms of amplitudes rather than

moments. We observe that the amplitude equations (9), (i0) and ([I)

all have real coefficients; hence, the square of any amplitude will

remain positive for all time if the amplitude is initially a real

number.

The conservatioh of entropy and kinetic energy are also
t

preserved without the fluctuating self-interactions. By multiplying

equation (I0) by 8, equation (Ii) by _, an_ adding, we obtain after

integrating over the entire volume of the fluid, the equation of

conservation of entropy,

2attla lel+ 101_._v + J lv*l_ + Iv eJ_j_v- £we}v . (_2)
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Here the v subscript indicates an integration over the entire volun_.

of the system.

We observe that equation (12), with a corresponding one for

the conservation of the kinetic energy 5 of the flow are exactly

the sameas those with the fluctuating self-interaction included.

Contributions from the latter may be reduced to surface integrals

.which vanish.

C) Fourier Decomposition of the Equations

It is convenient to work with the Fourier components of the

equations (9)-(11) rather than their space-variable form. The

free boundary conditions make the sine series appropriate. We

therefore write :

w(r,t) = _ fa(x,y) Wn_ sinn_ z

@(r,t) = Z f (x,y) ®n _ sin n _ z

n_

n

_n sinn _ z

Here f_(x,y) is ah arbitrary set of orthonormal functions generated

by the operator v_ 2 , and obeying appropriate periodic boundary

conditions in the horizontal:

v_=f (x,y) = . _fa(x,y)
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and

If--_f_',1_ = 6 _,

Introducing the above representation into equations (9), ([0),

and (ii) gives the following set of equations for the amplitudes

Wn' @n' and _n:

(_ B + n_ + (_2) mn(_= }_a_ a. (13)_r n2 + o2 (_n

__.... + n a + c_) @nC_ a3_ = mn
WC_ + WC_

2" 7," p_rp ( n+p or(n-p) ]n-p I

p=l

) (14)

I

where

and

_n

p=l a

mpa(@an+p + o(p-n) _in.pl) (15)

I

i

X = R/rr 4

'r = r_21;.

mn=Wn/na

a(x) = I, x > 0

= O,,x= 0

=-i, x<O
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Mmnipulation of the convolution terms in (14) and (15) is aided

by the following identities:

and,

_, Ap(Bn+p + °(n-p)BIn-p]) = I Bp(AIn-pl

P P

-A )
n+p

I Ap(Bn+p + c_(p-n)BIp-nl) = _ Bp(An+p + °(P-n)Alp-nl)

P P

2i

i
it

............. We find ,.
i,,i }

i:i!

There are two conservation equations derivable from (14) _md

(15). The first is the Fourier representation of equation (12) for

conservation of entropy. The other is the equation that partitions
[_

the totai: heat flux between conduction and convection; and it is

derived by multiplying 'equation (15,) _ by 1/n and summing over n.

_-- + i) 8n -- _j mn (16)

n n,(l

where

8n = - _n _n

Here the Bn'S are the cosine transform of the mean temperature

gradient. In the statistically steady state, equation (16) is the

equation for the total heat flux, which is a constant of motion for

the system. We now introduce a quantity N(t), the total heat flux

at the lower" boundary:

%.
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i;
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?1 ....-
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I
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I
2t

'i! "

? i
I

1
t

I

N(t) = i + ! 8n(t)

1

If the mean amplitudes are constant,

(17)

N = i + ®n _

n,_

In our units, the conduction state transports unit heat flux and

this equation is the nondimensional form fob the familiar equation

for the total heat flux.

d. Structure of the Equation

Before proceeding to the numerical results, we give a bricf

resume of t|_e pertinent qualitative features, of the system defined

by equations (13), (14) and (15). First of all, we note that the

horizontal wave numbers, _, sre coupled only in their effect on the

mean temperature field _. This interaction occurs diagonally in the

sense that each _ "intermets only with itself. As m consequence

there is a degeneracy in the horizontal plan form of the motion;

the system is insensitive to the particular cell shape. Moreover,

the number of _'s is also indeterminate. The simplest situation

is to have a single _ support the motion and we investigate only

this case here.

A single _• will give _ontrivial answers for the amplitudes

w and @ only if it lies within a certain range. The range of o

which will not support convection is obtained by assuming w and

I
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H

to be small, and demanding that they subsequently decay. If

w and _ are small, _ will be small to second order and our question

6
is equivalent to that of marginal s_ability.

not support convection if '-

(i + _)3 R
(18)

The system then will

Conversely, we assume that the steady state values of w and e will

be nonzero if _ lies in the range complementary to (18).

The time behavior of the system is complicated by nonline_r

effects. In the approach to the steady state, our numerical results

indicate that the system executes overdamped oscillations with an

ever increasing period of oscillation. This last remark is

understandable since wand _ become marginally stable as t -. oo.

If the mean field, _, is statistically steady as t -_ =, we

7
may use a theorem of Spiegel to show that w and ® are independent

of time. Spiegel has shown that the principle of exchange of st_bility

is valid (for free boundaries) in the presence of the mean g_.,dient

corresponding to the steady state solution to the mean temperature field

given by (15). This implies that the growth rates for the appropriate

eigen-function expansion for w and ® must all be zero in order for

there to be a statistically steady state.

III Numerical Procedure

In performing the numerical integration, we discard from the

onset those Fourier amplitudes which will be zero in the steady sta_:e.

.j •
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We assume that the steady state amplitudes ,,, @, and S |,ave even

parity about the mid point z = 1/2. This means that the even sine

mo_es of ,,,and ®, and the odd cosine moaes of 8 will have zero

amplitude in the steady state• We therefore put their initial

values equal to zero. The equations of motion (13), (14) and (15)

then imply that the odd parity modes will remain zero for all

subsequent time. Defining _n = B2n' we may rewrite (14) and (15)

in a more convenient form:

CO

(_ + n=+ _'.)_n = mn * ½ I _"p(_In+2p * o(n-2p)WIn-2pI)

p=l

(14')

(_--"+'_" 4n_j L = " 2"_n2 i U1p(@fn-p +

p=l

o(p-2n) P12n_pl )

I

(15')

-%

Here_ we have dropped the _ superscript since we are interested

in the system _onnaining only one _. Equation (13), remains

unchanged and the total heat flux is computed from equation _17)•

Our procedure for integrating these equations is to assign

an ii_itial set of amplitudes to ran, ®n' L' and allo_ the system

to evolve to the steady state. In doing so, we must truncate

the infinite set of equations. Our procedure in this matter is

to set all amplitudes ran' @n' _n of index greater than a certair_

integer, no, equal to zero. This method of truncation guarantees

exact conservation of heat flux and entropy for the abbreviated

system. Since "h is generally large and the ®n'S decrease rat,n,_r

slowly, we see from (15') that amplitudes for _n above n0/2 will
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i

have significant truncation errors. Truncation errors are ass1_med

to be negligible if increasing no does not appreciably alter the

value of the total heat transport The total humber of _N m gcles

_included in these calculations ranged from 20 modes at R = 400(3 to

80 modes at R-_ l0 s . The errors in the total heat transport due to
J

the above are estimated to be less than one part in 103

The integration forward in time was continued until constancy

of heat "flux (16) and entropy (12) was achieved to one part in 104 .

The time, in _ units, necessary to achieve this ran from _ 1.4 at

R = 4x103 to 0.3 at R = 106 . At high Rayleigh numbers, this

criterion was not too satisfactory, since constancy of heat flu:.- and

entropy were achieved long before the amplitudes w and @ became

steady. For these cases, it was necessary to check the time derivatives

of the slowest evolving amplitudes, w I and _i- The system was

observed to be steady if the derivative of w I was less than 2 percent

of w_ .

Examples of the time evolution for the total heat transport

N(_) are given in Figure i, for R = 4xi09, i04, l0 s and _ = 1.5.

The system was started in the conduction state at T = 0, with all

fluctuating amplitudes w N and 0,_ equ:_l to zero, except ml, which

had an initial value of unity. The convection is seen to develop

initially by way of large oscillations, and to decay to the steady

i

state with overdamped oscillations, whose period becomes increasingly

larger.._ The time scale of the initial oscillations in these curves

is of the order of the growth rate time- im the conduction state.

i" • i
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IV Discussion of Results

The computed steady state amplitudes are shown in figures 2-13,.

The normalization for B, w, and ® are given in the captions, while

T(z) requires no normalization. The graphs of T(z) are in a

. reflected coordinate system to conform with an accepted procedure.

The values of _ in figures 2-9 were chosen so that the heat

transport is very near its maximum. We now discuss in some detail

the physical features of the steady state amplitudes w, @ _ _ and
F , i

a) The Mean Temperature T and Mean Gradient _ (z__

The mean fields, T and _ in figures 3, 5, 7, 9, ii and 13

have an interesting behavior near the boundaries. At low Rayleigh

nu_er, these fields closely resemble the perturbation results of

Malkus and Veronis (1958), but the temperature gradient is slightly

negative in the central region. As the Rayleigh number is increased,

the negative temperature region collects closer to the boundary

while in the central region, the temperature gradient becomes

extremely small but positive.

The negative temperature gradient boundary region is apparently

produced by an overshoot pheonomenon. These occur typically for

motions of large horizontal scale (small e) and disappear for

motion of small horizontal scale. (See figures 9, ii and 13.) If

the motion has a large horizontal scale, an element of fluid close

to the lower plate moves in a region of high temperature for a

relatively long time. When it eventually turns upward, it move._

a
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unchecked by eddy processes and penetrates the body of the fluid

wit_ an excessive heat flux. The mean gradient accommodates this

motion by turning negative. The negative _ region then checks

the velocity field, so that the advective heat transport decreases

towerd the middle of the fluid. We see here evidence for the

non-local property of the flow; if the Rayleigh criteria for

convection were applicable locally, a negative S region would 11ot

persist in the steady state.

For motions of small h, rizontal ,_.aie (figures ii and 13 )

the _ituation is somewhat ¢I fferent. In this case, an element

absozcbs little heat from th_ lower boundary region and loses it

quickly by conduction because it belongs to a vertically elongated

cell pattern. It also loses m¢ _entum by viscous drag, and attains

its terminal velocity before reaching the central region of the

fluid (see figures i0 and 12). To maintain 'constancy of heat flux

the central region must conduct rat_.r strongly, so that the

mean gradient becomes large there.

b) Velocity and Temperature Fluctuations ,_

The velocity and temperature fluctuation fields are shown

in figures 2, 4, 6, 8, I0 and 12. We observe that the velocity

fields, for all Rayleigh numbers, have an extremely large first

mode. For example, at R = 4000, (figure 2) w_ represents 99% of

the total velocity a_plitude, while at R = 106 (figure 8) w_ is

95% of the total. On the other hand, the @n modes decrease ratl_er
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slowly as n increases.

The above behavior of the w n and e n spectra displays the

character of the nonlinear coupling in our system. Thus, the te_[m

w @ tend to be the dominant contributor to _n [see equation, (1 5')i _n-i

for reasonably small n. Conversely, terms of the form 8nW 1 and 8n_l,_l

tend to be the dominant contributors to ®n [equation (14')_.. The

nonlinear coupling scheme in the equations of motion is therefo[-e

highly nondiagonal, as opposed to the case of isotropic turbulence.

The strong nondiagonal coupling in the system of Fourier moc]es

is a relsult of the distortion of the mean temperature profile com-

bined with the pressure and dissipative forces for incompressible

flow. iThe above forces are directly responsible for the occurrence

of sixth-order derivatives in the marginal stability problem, of

which the steady state amplitudes w and ® are solutions in the

presence of the mean field 8- If we solve for the velocit'_s:_Odes

Wn, in the presence of the mean gradient S, by using the iteration

technique of Section V, we see that the higher modes of w n are

suppressed by a factor _n -6. For a reasonable 8, this factor

results in the higher w n modes making only a small contributioi_ to w.

c) Temperature Gradient Spectrum

The c'osine spectrum of the mean temperature gradient, _, is

given in figure 14 for R = 10 4, 10 5 , 10 6 and _ = 1.5. We have

connected the points with a smooth curve for the sake of clar[l;y.
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Y

We notice a tendency for the lower modes to saturate at _n = 2,

which corresponds to the small gradient outside the boundary layer.

In fact, if _n = 2 for all n, .=:(z) is a 6 function, and the gradient

vanishes everywhere except at the boundary, where it becomes singular.

At large Rayleigh numbers, the 8n spectrum-is nearly Gaussian

for small n, but decreases more rapidly at large n.

The tendency for the _n'S (for small n) to approach 2 as an

<

upper blound is closely connected with the fact that the velocity

field is marginally stable on the mean temperature gradient, _.

This fe_ature is brought out more'clearly by examining the relation

connecting the mean gradient field, _n and the Rayleigh number R.

Using the iteration method of Section V, we find

oo

_--= i - g _l + l - i _: [ 2n+l) e + ae] a (L "

"2 1

Zn÷i) + ...(19)

This series for R -I converges rather rapidly for all the -_
n

which have been computedjand the terms explicitly written in

equation (19) give R to an accuracy of { 20% at R = 106 . We

note that for this equation to balance at large R, 8: must approach

2, and the remaining lower modes must decrease rather slowly as

n increases.

The computed spectra (figure 14) are qualitatively quite

8
different from the one derived by MaLkug. "His spectrum is given by

"_n.= 2 (1 - 2no+ ,)



-21-

Here 2no+l is a cut-off in the "P spect.rum, an:" it is the total
" i' n

heat flux in our units. F:arginal stability is achieved at a much

........."" lower Rayleigh number for this spectrum than for the ones computed

here.

With regard to the F_alkus theory, figures i0 and ii are relevant.

For thls case (R = 106 , = = 6.0) the temperature gradient is

everywhere positive except near the boundaries where it appro.:_-._,::_

zero. The fields in figures I0 and ii therefore fulfill all the

requirements of the F.alkus theory as formulated by Spiegel (1962). We

note for this case tha_ the total heat flux is _ 22, whereas F.alkus

obtains a heat transport of ._ ii for free boundaries. In making

_his comparison, one should remember that these computations were

made for a single horizontal wave number, whereas the ka£kus

presumably allowed for a full spectrun_ of a's. However, if we

interpret the computed heat transport as an upper bound to the

heat transport as the F:alkus theory prescribes, we conclude that

for free boundaries the actual upper bound is at least a factor of

two larger than that obtained by F!alkus.

d) The Total Hea_ Transport as a Function of c_ and R

The total heat transport, as a function of R and _ is given

in figure 15. The Rayleigh numbers are indicated in the figure.

These curves closely resemble the perturbation calculations at

small R, but become increasingly broadened as the Rayleigh number

ingreases. For a given R, the heat transport is entirely conductive
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(N ": i) if _ lies outside the bounds prescribed by equation (I_).
i

The value of _ which maximizes the heat transport is I/_2_ at ti_e

critical Rayleigh number (R = 65?), and apparently increases
1

linearly in R i/3, at large R. It is well represented at high

Ray].eigh numbers by the formula:

o _ 0.7 + 0.01 RI/3
max --

The data on this point is not entirely conclusive because of the

large breadth of the curves. It Should be pointed out that

equation (20) cannot be a correct asymptotic formula since Oma x

is _,roportional to R I/3 and the value of o_ beyond which a single o

cannot support convection is proportional to Rl/4(equation 18). 9

estimate of the Rayleigh number beyond which (20) is incorrect is

not warranted by the accuracy of the curves, but according to

equations (18) and (20), it is R < 1018 .

The maximum heat transport as a function of R is given in

figure 16. For R > 3000 the data is accurately represented by

the following R I/3 law:

7_n

N _ 0.3i R I/3 (21)

Experimentally, the Nusselt number N is _ 0.085 R I/3, for large

R, and rigid boundaries (Jmkob, 1959}. We see no evidence for Dn

intermediate R1/4 law, but such a law may only be obtained in the

rigid boundary problem. Below R _ 193 , the data fits smoothly to the

perturbation calculation of Ma!kus and Veronis (1958).
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The discrepancy between (21) and the experiment is parL_y

a result of eddy processes which our prccedure omits. The use of

rigid boundary conditions may improve the agreement, but if (21) is

corrected for boundary effects as done by Malkus (1960) by decre_ising

('657 "_ I/3
N by \l-_7j , there remains a discrepancy of a factor of 2.

If we choose horizontal wave numbers such that the mean gradient

is everywhere positive (figures i0 and ii) the discrepancy is

reduced to 1.8. The latter fields, however, have the unattractive

feature of having a large temperature gradient in the central

region of the fluid.

V Linear Stability of the Fiel]s

The velocity and temperature fields we have so far discussed

are _table against the introduction of a disturbance of the s_n_ee

horizontal wave number for which the fields were computed. This

stability is inherent in the method of integrating the equations.

The :_tability of the steady state amplitudes against disturbances

at wnve numbers _' other than that _ _.lich supports the convection

proc_.ss has not yet been assured in our calculations. The question

of s:ability of the .solutions against disturbances of finite

ampl:_tudes leads directly back to the multi-_ system of

equal:ions (13), (14) and (15). We should assume a whole spectrum

of _'s are initially excited, let them evolve to steady state, ano

repeat the calculation for an ensemble of initial conditions. We

shal_, be content here with an investigation of the linear Stability

of tli_ system. This problem has sor,_e intrinsic interest, but our
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mai_ purpose is to lay the framewor]< for an investigation of tl_e

multi-_ system.

It is convenient to pose the l_near stability problem in

ter_s of the Fourier amplitudes (eql_ations (13), (14) and (15>).

We _:_uppose that the system Wnal, ®nC_1, and Bn have their steady

sta::e values, introduce disturbances 6Wn_, 6®n and 6Bn and ask

whe_:her the latter grows or decays. Since a_ and a are not coaTi,led,

6R must decay initially. The problem then is reduced to determiningn

the growth rates for 6Wn_ and 6@n_ in the presence of the mean

gradient Sn" Since exchange of stabilities has been proved for

Wn_1 _ and 8n will bethis system I0, we know that the system ' ®n i,

stable if the smallest critical Rayleigh number Rc for the

perturbation system 6w_ 6e_ is larger than the Rayleigh 11,,ml_ern _ n

for which w_1 and @_I were computed.

and 6®_ satisfyThe marginally stable amplitude 6wn , n

equations (13) and (15) at a Rayleigh number Rc, with the time

derivatives put equal to zero. Since the smallest Rc takes an ':

eigen function even about z = 1/2, we may abbreviate the

perturbation system by eliminating the even sine modes from the

velocity and temperature fluctuations. Defining

/_n = 6W2n- 1

8n = 82n

we may eliminate 6@ n byusing the,steady state form of equation (13)'



_25-

and write the marginally stability problem in the following maI_rJx form:

A(7) @ = ij_ (22)

•where"

•: A(_') = ,[(2n_i)_+o_2]_ {&nm + _ (_'n-m'.- L+m-I )}

u=_ , o=0.
C

11,

ii:

In writing the matrix A, we have used the alternative form fo_- the

convolution term in equation (14).

The largest eigen value, )_ (smallest Rc) , of equation (22) may

be obtained by the matrix iteration technique' (Hildebrand, 1952). Since

the first sine mode of thi_= velocity will be largest, we may conveniently

begin the iteration on a vector containing only this mode. Defi_.ning

II> = (i, 0, 0, o.., 0, .... )

we may write

_4 = fin <lIA nil> (23)

Rc--_) = Umax n-= <IIA n-lll> "

The convergence of the iteration scheme is quite rapi8 because of

the structure of the A matrix. At the highest Rayleigh number

considered, R = 106 , the ii th iteration gives Rc L06to one part i,_
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The calculated Rc(_)'s are shown in figure 17 for R = 5_I0 5.

The particular a which supports the mean field, S, labels the

various curves. At low Rayleigh numbers, (R < 5.10 3 ) these c,_rve_

closely resemble those produced by perturbation calculations.

Above R _ 10 5 they become increasingly distorted; steady state

amplitudes of small horizontal wave numbers are enormously un_;t:_ble

with respect to an introduction of a disturbance at large _.

In figures (18) and (19) we gi_e the zones of instability

for the computed amplitudes for R = 10 4 and R = 5xlO 5. In these

graphs, a_ is the wave number that supports the convective process:,

and _ is the wave number of the perturbation amplitudes. The

regions of instability are indicated by the shaded areas, who:_e

outer boundaries are lines of marginal stability. The line _ = a_

is a trivial case of marginal stability. The value of _ at which

the two curves cross represents a solution which is infinitessJmal]y

stable against all other _s. This value of _ begins at i/_,_

at the critical Rayleigh number and increases slowly with increasing
r

R. The rate of increase is seen to be slower than that _ which

maximizes the total heat transport. Referring to figure (15) we

see that the use of the most stable a instead of ama x will not

aF_reciably change the total heat transport.

The zones which linear stability theory predict must have two

or more _'s supporting convection are indicated by the cross_;hatched

regions in figures (18) and (19) These regions are obtained by

perturbing the a_ fields at _e, assuming that the a_ field
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!,

subsequently dominates the convection, and then demanding that

the _2 fields be unstable with respect to a perturbation at _I"

The cross-hatched region is then bounded by the descending mar-

ginally stable curve and its reflection about the 45 ° line. At

small Rayleigh number, R < 4x103 this area vanishes but it

gradually increases with Rayleigh number.

Conclud in_. Remarks

The temperature and velocity fields computed here with

the fluctuating self-interactions absent show qualitatively a

reasonable behavior. The boundary-layering of the temperature

field, which is found experimentally, is faithfully reproduced by

the system, and the heat transport has the experimentally determined

@ependence on Rayleigh number. In this respect, our results fol- the

velocity and temperature amplitudes, _s well as the stability _iysis

of the fields, confirm the original ideas of Malkus. However, our

result for the heat transport for free boundary conditions does not

agree quantitatively with Mslkus.

The only disquieting features of the results are the
,7

negative temperature gradients which can occur near the bounda_-y for

small 0,i_ and the rather large amount of heat transported by the

system. Aside from eddy processes, _here a±e two other modifications

in the system which must be explored before its q'Jantitative acc_,racy

can _e properly accesse_d.

First, the use of the more realistic rigid boundary conditions

will enable one to examine quantitatively the role of the e(_ _;,_ocesses

in p_oducing the experimental tempernture profile and the total l_eat

flux. The presence of shear forces _t the boundary will decrense the
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com_uted heat flux, and in checking the development of large scale

horizontal motions there, it will reduce the negative temperature

gra£ient. Preliminary indications are that the use of rigid-

bourdary conditions decrease the total heat transport by a

factor of 2.3. Secondly, the introduction of several horizontal

wave numbers will make the system more realistic, particularly

at large Rayleigh numbers. It will also permit a study of finite

amplitude stability of the system. The above modifications are

currently under investigation and will be reported on in the near

future.
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FOOTNOT_S

1. For a discussion of the Prandtl number dependence of the heat

transport for the complete system see Kraichnan, R. H., 1962:

Turbulent Thermal Convection at Arbitrary Prandtl Nun_oer.

Physics of Fluids 5 1374-1389.

2. See e.g. Chandrasekhar, S., 1961: Hydrodynamic and Hydro-

magnetic Stability. Oxford at the Clarendon Press, p. ]6.

3_ Discarding third order cumulants is quite different fJ:om dis-

carding third order moments. The latter procedure has as a

consequence that no steady state nc,ntrivial amplitudes exist.

For an investigation of the dynamics of decay for zero third-

order moments see Deissler, R. G., 1962: Turbulence in the

Presence of a Vertical Body Force and Temperature Gradient,

J. G___eophys. Research, 6__7, 3049-3062. :

4. For a complete discussion of the cu:uulant discard approxiraatio_s

see Kraichnan, R. H., 1962. The Closure Problem of Turbulence

Theory, Proceedings of Symposia in Applied Mathematics, Vol. 13,

Hydrodynamic Instability, American Mathematical Society, 199-225.

5. See Malkus and Veronis, loc. cit., p. 228 for a complete dis-

cussion of the conservation equations.

6. See Chandrasekhar, loc. cit., p. 35.

7. Spiegel, loc. cit., p. 196.
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8. M_lkus, ioc. cit., p. 200.

9. This fact has the consequence tha_: the heat transport, Nmax

i3 as_mptotically proportional to R3/I0. R. H. Kraichnan,

p::ivate communication.

i0. S_iegel, loc. cit. p. 196.
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Captions

F__i_sure i. Time development of the total heat flux, N(_) for

R = 4x103, 104, 105 and _ - 1.5. The system is in the conduction

state at _= 0, with all fluctuating amplitudes except w 1

equal to zero.

Fi____ure 2. 4.22x10-2w and 4.07® for R = 4xl03 and e = 0.8.

Figure 3(al Mean Temperature, T(z), for R = 4x103 and _= 0.8.

Figure 3(b) Mean gradient, 8 (z), for R = 4xl03 and e = 0.8.

(z) is normalized by the total heat transport, N = 3.92.

Figure 4. 2.05x10-2w and 5.16® for R = 104 and _ = 1.0.

Figure 5_a) Mean Temperature, _(z), for R = 104 and 6= 1.0.

F_gure 5(b) _ Mean gradient, 8 (z), for R = l04 and _= 1.0.

(z) is normalized by the total heat transport, N = 5.82.

Figure 6. 4.33x10-3w and 9.42@ for R = 105 and a= 1.5.

Figure 7_a) Mean Temperature, _(z), for R = 105 and _= 1.5.

F_ure 7_) Mean gradient, 8 (z) , for R = l0 b and _ = 1.5.

(z) is normalized by the total heat transport, N = 13.82.

Figure 8. 8.98x10-4w and 19.40 for R = l06 and _ = 1.5.

l_ure 9_) Mean Temperature, _(z) for R = 106 and _ = 1.5.

Fiqj_r___e 9__b__ Mean gradient, 9 (z), Aor R = 4xl06 _nd _= 1.5.

(z) is normalized by the total heat transport, N = 31.48.

-3 6
F___ure i0. 3.22xi0 w and 8.57@ for R = l0 and e = 6.0.

F__ure ll(a) Mean temperature, _(z), for R = 106 and _ _ 6.0.

_re ll___) Mean gradient, 8 (z), for R = l06 and _ = 6.0.

_(z) is normalized by the total heat transport, N = 22.3.



F iNure 12.

Figure 13(a)

F_!gene1__!!l!)

i.06x10-2w and 12.93 for R = 106 mnd _ = 9.0.

Mean temperature, _(z), for R = i06 and _ = 9.0.

Mean gradient, _(z), for R = 106 and a = 9.0.

B(z) is normalized by the total heat transport, N = 5.40.

Fi_ure_14. Cosine spectrum of the mean temperature gradient for

R = 104 105 , 106 and e = 1 5
, • •

Fi_oure 15. The total heat transport N as a function of _ f<_

R = 4x103, 104, 105, 5x105 and 106 .

Figure 16. Maximum total heat transport, Nma x as a function of

RI/3"

Figure 17. Critical Rayleigh number R c for R = 5xlO 5 as a

function _.

labels the various curves.

Figure 18. Stability diagram for R = i040 _ is the wave number

that supports convection, and _ is the wave number at which a

smallperturbation is introduced. The shaded region indicates

instability.

F_j_i_ure 19. Stability diagram for R = 5xlO 5'. _ is the wave

number that supports convection, and _ is the wave number st

w_ich a small perturbation is introduced= The shaded regions

The value of _ which supports the mean temperature fields

ir dicate instability _
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